二分查找
二分查找
最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid
是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节
// 二分法查找框架
var binarySearch = function(nums, target) {
var left = 0, right = ...;
// 注意使用小于等于和else if(更清楚)
while(... {
// 每轮被查找中值
var mid = parseInt((left + right) / 2);
// 查找到了
if (nums[mid] == target) {
return ...;
// 要找的值在中值右边
} else if (nums[mid] < target) {
// 左边界改为mid+1 (mid已经不是了,直接从下一位开始)
left = ...;
} else if (nums[mid] > target) {
right = ...;
}
}
return ...;
}
1. 标准二分
var binarySearch = function (nums, target) {
var left = 0; // 注意
var right = nums.length - 1; // 注意
while (left <= right) {
var mid = left + Math.floor((right - left) / 2);
if (nums[mid] == target) return mid;
else if (nums[mid] < target) left = mid + 1; // 注意
else if (nums[mid] > target) right = mid - 1; // 注意
}
return -1;
};
这段代码可以解决力扣第 704 题「二分查找」,但我们深入探讨一下其中的细节。
1、为什么 while 循环的条件中是 <=,而不是 <?
答:因为初始化 right
的赋值是 nums.length - 1
,即最后一个元素的索引,而不是 nums.length
。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right]
,后者相当于左闭右开区间 [left, right)
。因为索引大小为 nums.length 是越界的,所以我们把 right 这一边视为开区间。
我们这个算法中使用的是前者 [left, right]
两端都闭的区间。这个区间其实就是每次进行搜索的区间。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if(nums[mid] == target)
return mid;
但如果没找到,就需要 while
循环终止,然后返回 -1。那 while
循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right)
的终止条件是 left == right + 1
,写成区间的形式就是 [right + 1, right]
,或者带个具体的数字进去 [3, 2]
,可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while
循环终止是正确的,直接返回 -1 即可。
while(left < right)
的终止条件是 left == right
,写成区间的形式就是 [right, right]
,或者带个具体的数字进去 [2, 2]
,这时候区间非空,还有一个数 2,但此时 while
循环终止了。也就是说区间 [2, 2]
被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用 while(left < right)
也可以,我们已经知道了出错的原因,就打个补丁好了:
//...
while(left < right) {
// ...
}
return nums[left] == target ? left : -1;
2、为什么 left = mid + 1
,right = mid - 1
?我看有的代码是 right = mid
或者 left = mid
,没有这些加加减减,到底怎么回事,怎么判断?
答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]
。那么当我们发现索引 mid
不是要找的 target
时,下一步应该去搜索哪里呢?
当然是去搜索区间 [left, mid-1]
或者区间 [mid+1, right]
对不对?因为 mid
已经搜索过,应该从搜索区间中去除。
3、此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组 nums = [1,2,2,2,3]
,target
为 2,此算法返回的索引是 2,没错。但是如果我想得到 target
的左侧边界,即索引 1,或者我想得到 target
的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target
,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。